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Cubic Optical Response of Molecules in a Nonequilibrium and Equilibrium Solvation Model
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The cubic response equations governing nonequilibrium and equilibrium solvation in the continuum approach
are derived and implemented. We consider solvent effects on the frequency dependent second hyperpolar-
izability. We illustrate the effects of optical and static dielectric constants through sample calculations on
H.O and HCO.

I. Introduction Presently we focus on the extension of the response method
to cubic response, leaving the basic solvation model unaltered.

The technological interest for nonlinear optical (NLO) This enables, for the first time, correlated ab initio computations

materials has generated a vast field of experimental and of the dvnamic second hvoeroolarizability within the dielectric
theoretical techniques over the last two decades and a fair Y ' yperpolarizability withi ' I,

amount of attention has been given to the quadratic optical eqé"'b”um’ and noneqllullbnum_contmgum sol(\j/ent model. .
response of matter. However, from a technical point of view, ontrary to structural properties and ground state energies

cubic optical response properties of matter are those of realOF @ solvated molecule, the description of dynamic NL.O
applicability in future optical device’s:® molecular properties strongly depends on the manifold of excited

Primarily, experimental efforts have focussed on measuring States for the solutesolvent system. Previously, this has been
NLO effects in the condensed phasslids, pure liquids, or considered using semiempirical methG&s? Ezle or time-
molecules in solutionsince most potentially interesting NLO ~ dependent HFS and MCSCF response thedf}f2"*° In the case

systems decompose upon evaporation. Furthermore, the interest' d);ggmic second hyperpolarizabilities, only recently Cammi
for the condensed phase stems from the practical realization oft ' o||m|/0k?d the po]!arlz?blelcontlnuum model at the HF level
processable optical devices. From a theoretical standpointto model so vanonq molecules.
reproducing condensed phase NLO measurements, using first In the theory section we briefly reiterate our sol_ven_t model,
principles methods, is extremely difficult. The inherent problem the solvent response method, and show the derivation of the
of optical processes in condesed systems is the coupling ofcubic .solve_nt.response equations. The |mplgmentat|on of these
processes on a wide range of time scales. In principle, it requires€duations is illustrated with sample calculationsydior H.0
a conjunction of theories describing processes on the pico second@nd FCO in different solvents. In discussing these results, we
scale down to instantaneous events. The latter, however aredddress the effect of equilibrium and nonequilibrium solvation
suitably described in the framework of electronic structure Ny and its dispersion. N
theory. The NLO properties of molecules are sensitive to the
Ab initio electronic structure investigations for small mol- molecular enV|ronmerii?zsszv?gv?’aﬂespeualIy for hydrogen bonded
ecules in vacuum, for which gas phase measurements exist, shoWPecies such as 32 and HCO. Consequently, only
that computation of NLO properties of isolated molecules are qualitative trends for the second hyperpolarizability should be
realizable but demanding. Furthermore, the response methodol-expected from such prellm;r;ary sample computations, as
ogy’ has proven successful in the computation of dynamic, Previously established for 49" _ _
electronic first hyperpolarizabilitieg],2-* and second hyper- The cubic optical response is the first NLO effect which does
polarizabilities {).11.9.12-18 not average out in isotropic systems. In our present use of the
The above motivates our on-going work with the multicon- - continuum model we assume full isotropy of the solution. As
figurational self-consistent reaction field (MCSCRF) solvation mentioned above, from electronic structure computations only-
response model. Previously, it has been described and imple-€lectronic contributions tg are accessable. Despite the fact
mented for lined®2® and quadrat® optical response of  that our method allows for the evaluation of the entirensor

molecules in equilibrium and nonequilibrium solvation. for abitrary frequencies, here we exclusively address third
harmonic generation (THG)y(—3w;w,w,w). For solute-
* Author to whom correspondence should be addressed. solvent systems, one must expect this process being the least
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perturbed by nonelectronic degrees of freedoms, when consider+esponse of the dielectric medium, are given as

ing optical frequencies.

Il. Theory

A. Equilibrium and Nonequilibrium Solvent Models. The
solvent model employed is a generalization of Kirkwood’s
original modeR3-3>where solvation is modeled by surrounding

the solute with an isotropic and homogeneous dielectric medium.

Among the many cavity shapes in use, we employ the simple
spherical cavity, having only the cavity radiuB, as a

parameter. The solute molecule is placed with its center of mass

at the origin of the cavity, and formally represented in terms of
a multipole expansion (of orddmm) of its molecular charge
distribution, p(r,t). The dielectric medium is characterized by
a linear and macroscopic electric polarization vedggt), with

a correspondent dielectric constast).

For the dielectric response to changes(n;t), we use the
approximation that solvent dynamics, on various time scales,
may be partitioned into infinitly fast and slow processes. Thus,
the total polarization vectd? has only an optical and inertial
contribution,

1)

with the dielectric medium characterized by the opticgland
statices; dielectric constants, respectively.

Prior to the application of high frequency, external radiation,
the solute-solvent system is thought to be in internal equilib-
rium. This equilibrium configuration is defined bl,, the
choice of which in principle is arbitrary. The corresponding
molecular electronic state i and the molecular charge
distributionp;. Upon interaction with electromagnetic radiation,

P="P,,+P,

only Pop, may adjust to sudden changes in the molecular state

(JoC— |00) which results in the new molecular charge distribu-
tion, pr. However,P;j, remains unaltered reflecting the solute
charge distribution prior to the electromagnetic perturbation. The
result is a nonequilibrium solvensolute configuration where
the solvation energy is given by

Z g (Eop) l:rlm(pf) D]:r|m(pf) [H

Zgl(ésv Eop)[ZErlm(pf)D_ [_—Tlm(pi)I:.'“:rlm(pi)I:J (2)

neq __
Esol -

The expectation values in eq 2 are obtained according0]
= T{’m — [T&mdand taken with respect to eith@lor |OC] The
nuclear charge moments are given as

=Y Z{"R,) 3)
g

where Zg is the charge of nucleug and Ry its position.
Similarly, the electronic charge moments are given as

Tin = 2 o= 3 Dol O104Ex,
Pq p

with t™(r) being thelmth component of the real spherical
harmonics and; the ith molecular orbital. Eyq is the second
guantization spin-free operator

Epq = Za;aaqo

(4)

®)

which annihilates an electron ipq (of spin symmetryo) and
creates it ing,. The reaction field factors, describing the

av

2[ + (I + 1)]

Ry A +1)E-1)

g(e) = (6)

and
(1)

Applying a static external field does not give rise to a
nonequilibrium configuration: changesg(r t) occur infinitely
slow such that all solvent degrees of freedom have time to
equilibrate. In this limit, thereforeg; = pr and eq 2 reduces to

Zgl (est)l [:I—Im(pf)[]]2 (8)

gl(est’eop) = gl('Est) B gl(éop)

ES =

sol

which we refer to as equilibrium solvation.

In order to describe the time evolution of our model system
we need a Hamiltonian of the form,
Vvsol + Vpert(t) (9)
where (i)H, is the nonrelativistic many-electron Hamiltonian
for the molecule in vacuum, (iiVso is the effective solvent-
solute interaction operator, which depends on the current
molecular statg00) and (i) Vper(t) is the operator for the
interaction between the solute and the external frequency
dependent electromagnetic radiation field. The effective soeivent
solute interaction operator is written as

Wsol = gl(eop)(-l—rm)2 + g(est'eop)(-rlnm)2 + Tg(est' 6op)
% % (20)

H(t) = H, +

and is obtained using FrenkelPsvariational principle for
approximate wave functions: the solvent interaction operator
must give similar time independent properties as obtained from
derivatives of the energy expression. Therefore, it is not the
operator that gives the solvent contribution to the total en-
ergy1937.3% The interactions between the nuclear framework
and the solvent give rise to the first two terms in eq 10 which
involve optical and inertial polarization contributions. The third
term we write as

Tg(esveop) = g:(s%)l + g(st()))l + g:(sia)l (11)
where
gg?))l = _zzgl(eop)-r?m Tlr:n
m
g = ZZg.(eoanmEfDWmD
m
o= —2Zg.<est,eop>mm<pi)ufm (12)
m

In decending order the three terms in eq 12 represent (i) the
optical polarization, induced by the electronic charge distribu-
tion, interacting with the solute’s nuclear charge distribution,
(ii) the interactions between the optical polarization, due to the
electronic charge distribution, and the electronic charge of the
solute, and (iii) the inertial polarization interacting with the
electronic charge distribution.

Of the three terms we recognize that the instantaneous
coupling between the optical polarization and the molecular
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electronic subsystem is dued). Note, further, that the limit ~ are obtained using the operators®eand &. Taking our

of equilibrium solvation can be obtained by setting = est reference stat¢g0l0as an MCSCF state, the evolution of the
such thatTy becomes molecular state is parametrized as
b
T(e) = o5+ oo + 9 (13) O 0600 23)

as used in previous equilibrium studiés.

B. Response Method. The time evolution of the electro-  Further, the time-transformed elementary operators occuring in
magnetically perturbed solvensolute system is propagated eq 14 are given as
using Ehrenfest’'s equations of motion

ds 13 Q~’r’~ T I G, = Vgl e ™0
oT'o0= @)‘dtT o[- im[TTHI00  (14)

for a set of operators Gog = em(t)qpq —ik(t)
T=@"R'aR) (15)
defined according to Rw: — ik(t)eiS(t)R"gefiK(t)efis(t)
R:: ~ o ﬁn — ik(t)eiS(t)Rne*iK(t)e*iS(t) (24)
O = Eg P> (16)

| 16.R' the state t f t ible f The Hamiltonian used in eq 14 we take from eq 9, and for the
n €q f’F;n are; € state trans _err] opera _orshresp(;]ng € Ior solvent-solute interactionWso we note that onlyTy(esu€op)
mixing of the reference statf)L] with states in the orthogonal . ibtes to the Ehrenfest equation. Itis convenient to rewrite

complemen{|n(}, whereagy, induces mixing among orbitals.  iha solvent-solute interaction operator as:
Using these operators we define Hermitian generators of unitary

transformations in configuration space

W={g%+ a5 + 80 =957+ C"DID™O0 (25)
S = Y (SOR+ SOR) (17) | i

sol

and orbital space whereC'™ = 2gi(eqp) Ty, andD'™ = Tp . Thus, at this point we
write eq 14 as

k(0 = (kDB T K(DES)
s d d
“oi600= (g 6ol 116", + vionon-
= Z(xk(t)ql + Ki(Ha) (18)
it0|[O",g% 100 iZ[ﬁn[éT,c'm]mmﬁnD'mmD (26)
the time dependent amplitudes of which are collected in a vector m

K Previously, Olsen et dlderived the matrix representation of

B= S (19) eq 14 for the situation where the molecule is in vacuum. Our
K* concern, therefore, are contributions from the last two terms in
S eq 26, which principally have the following structure

Since we consider time-dependent perturbations, the amplitudes
must be expressed in a more general b&&} (ref 7) such
that

0[6",c0|D|0g00= m[O,C|0mdDI0D  (27)

with C andD being time-independent operators. Following the
k) +S)=T=00« (20) procedure from ref 7, we obtain the following matrix represen-

This operator basis is split into a configuration and an orbital tation of eq 14

part according to

0, =0, + 0 (21) Z(,) q[rmlz h ahl(t) Oty )= ZO(')”H E,[Tﬁ]z at

which allows the amplitudes to be written separately as

VF[n+1] t) — \n+1 G[n+1] +
k() = zotj(t)Ooj J’hl'hZ""hn} rlahﬂ() Z)(I) { j.hyhy,. h,
]

n
c/min— k+1 ::n[rg ’’’’’ hl) ”ahﬂ(t) (28)
=

SUEDYHGIe 22) ZOZ e D
J

The unitary transformations in configuration and orbital space where the definitions of Qnﬂ] EJ[rr‘wjrlw]zhn and
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\/]‘[,Tjhlz] ,_are given in ref 7. The remaining terms are

il n (_1)” k n |

pmMi  =§F —— 6 0., D'™Mo0 29
hih,..hy kZD k!(n . k)! |;!:l Ch”‘u:k L oh, | ( )
and

{n+1]
j.hhg,.hy

n (_1)n k n
—— (o[of,[16 O, X]|0CH
kZok!(n—k)! °‘J:l %l:L o
k

n
/[0, [0 [ O, XI1100) (30)
: u=k+1

u=

where commutation is represented by the following superop-
erator notation: A(B) = [A, B]. The matrix components,

| . .
ENh n G . andC Y are given by the following

substitutions:

_ 1
X=H, — Ej[,hl,h]z,...,hn
__ atc) [n+1]
X = Qgol i.hy b B,
X=cm Rl (31)

Until this point, no assumption on our reference si@fgvas
made sinceP;, could be chosen randomly. However, the
electromagnetic interation operator has the form

V(D) = [ doV” expl(—io + )] (32)

whereV” is the Fourier transform of(t) andz an infinitesimal
positive number. Thus the perturbation is applied adiabatically,
that isV(t — —o) = 0, in which caséNse(t — —) = Wse. AS

a natural choice, we optimize the reference state subject to the

generalized Brillouin condition, allowing full relaxation &%,

i[q"H, +W|00) _ (o (33)
[0[R"H, +W]jog) |0
where
W=gZ°+ ZC'm[(D|D'm|OD (34)
m
C. Implementation of the Solvent Contributions to the

Cubic Response Equations.The implementation of the cubic
response equations with nonequilibrium or equilibrium solvent

configurations is based on previous program developments

within the DALTON progrant.19-21.27.3%-42. Erom a practical
point of view, we utilize that the vacuum part of eq 28 already
has been implemented for lineamguadratic’® and cubié!

response theory. We obtain the cubic solvent response by

Sylvester-Hvid et al.
vacuum equations. The third-order solvent contributions in eq
28 we write as

3 mrATATIAN — 4
O(—iI[O" W00 = IGf}},, 0, 0t 0t +

13 (DI, o+ o) i+ D
m

Im[3]
hyhyhy ijhzhs +

Im{O] ~Im[4
D™ ]ij[lh]zhs} O, Oy, Oty (35)

The evaluation of the terms frong/'i'*, ~and DITEY |
; ; - i 1M+
through third order is presented in Appendix A.
It is advantageous to define the following effective solvent
operators:

A= ZC"“[(MD'mIOD: ZZgl(eop)[ﬂ)|Tfm|0Dfm (36)

W=A+g%9=

sol

A— 2Z{gl(eop)-rlnm +
gl(estieop) Er(io|)|1 TIem (37)

A= zzg.(eoa{ | Ty,(*%) |0+ 0Ty |00+
O[T, I0"G TS, (38)

2
B =~ 66 DT, 070+ T O T;, (29
A= 3 (e DITh (010 200" T (o) 00+

O] 5, (%) |00 + (0™ T}, |0°RTH 0T |0D) T, (40)

1
AB= Zg(eop)(:—; /T, (', %, %) | 0H

(0™|TE, (i, %) [OCH [O|TE, (3, %) |0 +
(T, (%) 1070 07T (k) 0 D) T, (41)

In egs 38-41 and the following we use transformed states
defined as

|oRC= —Z%IHD (42)

[0 =% sm

n

(43)

along with index transformation of solvent integrals defined as
Y('i) = [e().Y]
Y, %) = [e(®).[ (1), Y]]

Y, e, %ie) = i), (@), [ 1] (44)

adding the third order solvent contribution to the corresponding We obtain, using the above solvent effective operators, the
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following solvent contributions t&IN'N2N2 in cubic response:
o]
1
1 2 3
~ Wit N NP NG, = P(1,2.3{ (§m2L|V\/|o3RD+ §@‘W+ EA‘OGSE%) o% N

'S
g(@)“ [qj,w+ g’A] ‘0D+ @)”qj W+ gA] olFﬂ
1- 3 | 4 [(DlL|[qj,W(3K) + A 0RO+ [G)2L|[qj,W(3K) + AR
. 6‘W+ A0 I . .
*5 +
SS 2 @)n q_’r W §A OD+ @ qu+ §A oR 2 E(D1L|[q]-T,W(3K) + A3]|02R[H- [(DZL|[C]J-T,W(3/<) + A3]|01R|:|
3 ]’ 2 o 2 0
1 3
—E@R‘W + EA‘ il]
0 0[q, W) + ACk) + 2A% + BY|0

1
(%m)ZHW(%) + AYOTH W) + A3|02R[) s| ., %mwﬁc) + ACGe) + 2% + BYoD
+ +
0 S o|[q] WC) + ACk) + 2A° + B%|00]
1 1
(m)ZHW(?’K) + A%0TH SDIWCK) + A3|02RE)1 S - %umwﬂ) + AGK) + 2A% + B0

0" [0, Wk, *k) + 2A% + 2A% )] |00+ ][0, W, *) + 2A%° + 2A%(%)] |00
GIWCk, 3) + 2A% + 2A%(3%) |00 N

0110 Wk, %) + 2A% + 2A%C)]|0CH- [0][gf W, %) + 2A%° + 2A%(%)]|0*R0)
—[0™"M Wk, %) + 2A% + 2A%(%)|j0

1
2

0 O/[q, W(k, %, %) + BA™ + 6A(%) + 3A"(k,%)] |00
Y GIWC k%, %) + 6A + 6A(%k) + 3A' (k%) 00

1
1 2 3 23 2,3 %
ZIOW(k, k) + 2A° + 2A 0 + + + 3A

2 IWCk ) ()l 0 6 [(DI[CIjT,W(lK,ZK,gK) + 6A™ 6A12(3K) 3 1(2K'3K)]|0D

1
S —OW(, %, %) + A + 6AY(k) + 3AY %k, )|ji0
0 0
3 IA0FO | 1 IACK) + A%+ B%j00
4 0 2 0
—0" Al —|ACK) + A+ BYjj

whereP(1,2,3) is the permutation operator. The above equations plane such that molecular dipole moments point in the
have the same structure as the corresponding response equatiombrection. All computations were performed in tkg, point

for the molecule in vacuurft. Therefore, the iterative algo-  group.

rithms for solving the sets of response equations or response The geometry of KO is: Roy = 0.959 A and@yon =
eigenvalue equations that was introduced in refs 7, 40, and 41104.654, and the cavity radius is 2.37 A, as used previotsi§t
are maintained. These algorithms involve linear transformations The formal multipole expansion of the molecular charge

of the matrices with a trial vector. distribution was truncated aftér= 7, which has been shown
to give a proper description forJ @3> Eight active electrons
Ill. Sample Calculations were distributed in the eight active orbitala;42b,, and Dy,

and the core orbital o&; symmetry was kept inactive. The
As an illustration of the cubic response method for equilib- basis set employed was the ANO set designed by Widmark et
rium and nonequilibrium solvent configurations we consider two al.** with a [13s8p6d/5s4p3d] contraction on oxygen and a
solutes: HO and HCO. The electronic structure of the solutes [8s4p/4s3p] on hydrogen. For the vacuum molecule this gives
are evaluated using a complete active space (CAS) wavea Hartree-Fock energy of-76.064960 au. In order to compare
function. The choice of active space was based on MP2 our present results with previous equilibrium and nonequilib-
occupations numbers and having one correlating orbital for eachrium, linear and quadratic solvent response properties, the
strongly occupied orbital. The molecules are placed inythe choices okqp andeg are as in refs 20 and 21: (i) nonequilibrium
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Static Dielectric Constant: 4= 3.00 Static Dielectric Constant: ey= 78.54

2500 2500
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®=0.0656 - ©=0.0656 K-
5 2000 F ©=0.0932 & 3 5 2000 F ©=0.0932 -~
N g §
iy =R A [
8 1500 [ 1 8 1500 t -
g 8 e
g ] &
e % 8
= 1000 | I Koo * ] I 1000l
500 . - . 500
1 15 2 2.5 3 1
Optical Dielectric Constant: &,, Optical Dielectric Constant: &,
Figure 1. Nonequilibrium solvent calculations of(—3w;w;w;®)zz:, Figure 2. Nonequilibrium solvent calculations of(—3w;w;w;®)zz:2
of a solvated water molecule as a functionegf and withes; = 3.00. of solvated water molecule as a functionegf and withes; = 78.54.
The electronic wave function is a CAS wave function. The correspond- The electronic wave function is a CAS wave function. The correspond-
ing gas phase values are indicated with dotted lines. ing gas phase values are indicated with dotted lines.
solvent configurations, variation ef, from 1.30 to 3.00 in steps 2500 __ Optical Dielectric Constant: qp=180
of 0.3 \.I\{hl|.e keepingest eqyal tq either 300 or 78.54; (i) ©=0.0000
nonequilibrium solvent configurations, variationegffrom 3.00 ©=0.0345 -
to 78.54, keeping fixed at 1.80; and (iii) equilibrium solvent 5 2000 f O=0.0808
configurations, ands; is varied from 3.06-78.54. =
For H,CO we used a spherical cavity with a radius of 2.645 1§ E’"-»-.v.v,D»
A. The molecular geometry of €0 is from Herzberd® and g 1500 ¢ B 9 3
the multipole expansion taken to order 10. The complete g
active space isd, 4b,, 2b;, and @G, with 12 active electrons, 2 1000 |
and we have used the basis set presented in ref 46. For the gas S * * * * *
phase molecule we obtain the Hartrdeock energy to be —
—113.503616 au. The choice af, andes corresponds to the 500 : — S S
following solvents: benzeneg = 2.284,¢,, = 2.244), ethyl 10 20 30 40 50 60 70 80

ether €5t = 4.335,¢0p = 1.828), 1-hexanoleg = 13.3,€0p =
2.005), acetonec{; = 20.7,e0p = 1.841), methanolkg; = 32.63, _ e _
€op = 1.758) and waterel; = 78.54,e0p = 1.778). Figure 3. Nonequilibrium solvent calculations of(—3w;w;w;®)zzz.
of a solvated water molecule as a functionegfand witheo, = 1.8.
. . The electronic wave function is a CAS wave function. The correspond-
IV. Results and Discussion ing gas phase values are indicated with dotted lines.

Static Dielectric Constant: £,

In the following we present computational results as obtained uration. The specific choice efy, corresponds to a value typical
for HO and HCO for the second hyperpolarizability tensor. of common solvents. For small values ef, at first the
For sake of brevity, we present only the THG component along attenuation ofy is drastic, then the values pfgradually level
the dipole direction, that ig;(—3w;w;w;®)zz2z Which we from out at values below the corresponding gas phase values.
now on simply refer to ag. Generally, these decreases are more pronounced as the frequency

A. H2O. In Figures +4 we present CAS computations of of the perturbing field increases. The situation in Figure 3
y at four different input frequencies: 0.0, 0.0345, 0.0656, and should be contrasted with Figure 4, where the effect dor
0.0932 au. The corresponding gas phase valugsaoé given equilibrium solvation is displayed for increasiag In this case
as the dotted lines in these figures. Figure 1 and 2 display the notion of inertial polarization is absent and starting from
similar trends among which the strong dependence of different the gas phase valug,is increased almost in an opposite manner
nonequilibrium solvent configurations is quite clear. For fixed as in Figure 3. Evidently, equilibrium and nonequilibrium
€st, @N increase imop (Which enhances the optical polarization solvation give rise to quite different behavior of the THG
contribution) is accompanied by an increase of the THG response at the CAS level of electron structure theory. For
response. Also, for the individual frequencigsoriginates nonequilibrium solvation, qualitatively speaking, trends are
below the corresponding gas phase value for small values ofsimilar at the HartreeFock level as we may confirm by
€op- For all but the case wheeg = 78.54 and» = 0.0932 au, comparing Figures 3 and 5. Primarily, electron correlation gives
we observe that the effects of nonequilibrium solvation lead to rise to larger values of, as also seen for the gas phase values.
values ofy that supersed the gas phase value with increasing The main conclusion for 0 is that the dynamic THG
value ofeqp. The differences between Figure 1 and 2 primarily response in the dipole direction increases for equilibrium and
amount to the fact that, for gives,, the value ofy is attenuated decreases for nonequilibrium solvation, relative to the gas phase
due to shiftinges; from 3.00 to 78.54. Furthermore, in Figure values. This we understand in terms of the increasg far
1 we illustrate the limit where nonequilibrium solvation becomes either situation: increasing the optical polarization contribution,
equilibrium solvation: we see that increases witheop up to that is,eqp, While keepinges; constant, or decreasing the inertial
the point wheresop = €. Figure 3 clearly illustrates how the  polarization contribution, that igs, for a giveneqp. In either
THG process (in the dipole direction) is impeded by increasing case the solvent configuration is allowed a larger flexibility to
the inertial polarization for the nonequilibrium solvent config- relax to changes i during the interaction with the electro-
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Equilibrium Calculation
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Dielectric Constant: e

Figure 4. Equilibrium solvent calculations of(—3w;w;w;):2:0f a
solvated water molecule as a function of the dielectric constant. The
electronic wave function is a CAS wave function. The corresponding
gas phase values are indicated with dotted lines.

Opticai Dielectric Constant: 1.80

1300 . -
1200 ®»=0.0000 ——
©=0.0345 -
. 1100 t ®=0.0656 - 1
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=~ 1000 f  vmo. 1
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g
8 800t
g
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eool * * % * %]
P
500 ¢y e
400 X . : , , N .
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Figure 5. Nonequilibrium solvent calculations of(—3w;w;w;w)zz22
of a solvated water molecule as a functionegfand with e, = 1.8.

The electronic wave function is a SCF wave function. The correspond-

ing gas phase values are indicated with dotted lines.

magnetic radiation field. Since equilibrium solvation represents
the extreme of this picture (the entire polarization field may
relax) theny must be overestimated. With the spectral
representation gf in mind, the increases are also evident from
the point of view of excitation energies. Assuming unaffected

transition moments, an increase in the optical polarization leads

to decreased excitation energies, and consequently increases
V-
From this and our previous studi€s*! it is clear that there

is a tremendous difference between the results obtained in the

equilibrium solvent model and the ones from the nonequilibrium
solvent model. It is also clear that for high frequency external
fields it is necessary to utilize the nonequilibrium solvent model.
B. H,CO. In Table 1 we present the static and frequency
dependent second hyperpolarizabilijy of H,CO for the
equilibrium solvent model. The values gpfare the averaged

second hyperpolarizability tensor elements parallel to the applied

field. The solvents are benzene, ethyl ether, 1-hexanol, acetone, . SRl A
t ematical derivations for the development of this method.

methanol, and water. Application of the equilibrium solven
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TABLE 1: MCSCRF Response Calculations of State and
Frequency Dependent Second Hyperpolarizabilities Using
the Equilibrium Solvent Model?

vacuum or
solvent w=0.0(@u) »=0.0049 (au) o =0.0278 (au)
vacuum 2368.86 2375.70 2606.80
benzene 3423.87 3433.68 3764.38
ethyl ether 4135.06 4146.88 4544.60
1-hexanol 4899.14 4913.13 5383.73
acetone 5059.77 5074.22 5560.34
methanol 5170.92 5185.69 5682.59
water 5288.50 5303.61 5811.97

a2 The presented numbers are the averaged second hyperpolarizabili-
ties parallel to the applied field. The frequency of the field is denoted
by w. The units are au.

TABLE 2: MCSCRF Response Calculations of Static and
Frequency Dependent Second hyperpolarizabilities Using the
Nonequilibrium Solvent Model?

vacuum or
solvent w=0.0(@u) w=0.0049 (au) o =0.0278 (au)
vacuum 2368.86 2375.70 2606.80
benzene 3394.83 3404.55 3731.97
ethyl ether 2902.36 2910.22 3174.20
1-hexanol 2904.09 2911.80 3170.36
acetone 2771.14 2778.43 3022.82
methanol 2700.79 2707.85 2944.45
water 2699.12 2706.19 2942.99

2 The presented numbers are the averaged second hyperpolarizabili-
ties parallel to the applied field. The frequency of the field is denoted
by w. The units are au.

izability decreases with increasing solvent polarity, and we
observe a similar interplay between the optical and inertial
polarizations as in refs 20 and 42. As the optical dielectric
constant increases and thereby the optical polarization vector,
the optical polarization of solvent increases. Within the
nonequilibrium solvent model this increase leads to a better
solvation of the solute. Comparatively, the valuesyoin
benzene and 1-hexanol are larger than expected from their values
of the static dielectric constants.

The values ofy when HCO is solvated are for all solvents
larger than the one where,80 is vacuum.

V. Perspective

in We have presented the first method for treating fourth-order
molecular properties of solvated molecules described by cor-
related electronic wave functions. We describe the solvent as
a dielectric medium and its interactions with the solute as being
between the optical and inertial polarization vectors and the
solvated molecular charge distribution. The optical polarization
is in equilibrium with the charge distribution of the solute. On
the other hand, the inertial polarization vector is either in an
equilibrium or a nonequilibrium state with respect to the solute
charge distribution. The state of the inertial and optical
polarization vector depends on the time-dependence of the
external perturbation. We have presented the necessary math-

model gives second hyperpolarizabilities that increase with Furthermore, we have implemented the cubic solvent response
increasing static dielectric constant, and for all solvents the valuemethod in the DALTON program and presented sample

of y increases compared to vacuum.
Utilization of the nonequilibrium solvent model gives rise to

a completely different picture of the solvent dependence of the

calculations on KO and HCO.
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Expansion of eq 30 to third order and introduction of the  —[|A(%,%.%)|j0
operatorsT = (q, R, g', R") gives 6

1
+ 5([cnlL|A(2K,3K)| j 0~ 'SOIACK, %) |00y

XMR' = —0/X|j0 (46) 1 o
. - 5([cmA( )| 0 [0%ACK)[0D'S'
XY[R] = §IX|00 (47) 1, o e, .
— = *ST0™A( K,)|om+—z Sh “SOIACK)j0
XUg] = 10/[g,X]100 (48) ? 2,
_ Tt 2R L SRyL
X0, = DX DXIOS + TX0 (49) (AT TS
1
X[R]e, = ~IXCI00- 03§ — IXI0¥0 (50) 52 (T ST SHIDAC
1
X2[qla, = —0][g,X()] (07 i[q,X] (00 (AT DIAOT) PSS
i 1
(0™, X]100 (51) + Y 'S °S (A0 *SDIAI0] 7
1 _ : ’
KR, = = OXCeA DT A IRle 0,0, =
1 . !
5 ([(D|X|02R[H_ [(D2L|X|OD'|_ 2|:0|>((2/{)|Om§ + —_ ém'A(lK,ZK,SKNOD
1
% 0™ X|0F — %ZS%* 25,01X(j0(52) ~ JWACK |07+ '§DIACK /0

~ AT 0™ACK) 100"
3] _ 1 1.2 2 1R 2
X [RToy 0y = =~ OIX(Ck, %) [OCH JIX (%) |07 TH- 1 1

. — S DIACII0TTS — 5 S "STIACK00
= (|X|0* T+ [0 |X|0CH- 200|X (%) |0F'S + 1 "
2 — Z(0*AIORD+ |:(])2|_|A|03R|:ﬂl§
= [X|0**AS + Ezlshzs;mxmu(se,) °
2 24

1
—5 2 (S5 + s’ )mA0S
X[3] — 1 1.2 1 3L 1R 3k 1 2
gl oy = 5 [O[[;, X("x,“K)]|0CH - g(tm AI0FT+ S, 'S DIA0)’S
1
1[4 X)) 10T g XC IO - (%[, X]107 T - é(m|A|o3RD+ SoIAY Y °S) s, (18)
1 R '
019, X]1070 + - D[N0y (S, 'S, +78'S) (64) A, falo,0,, =
" 1
)([4]j,Illzla[qj]Ol|1OL|20L|3 = - gm“qj‘A(l"'szSK)] |00
1 1
- gmuq,-,X(lx,Zx,“”K)] |0&5(m|[qj.><(2x,3x)] 0RO+ - g(mn[q,»,A(zxf’x)] |00 ([0, ACk,%)]|00)

DHlgXCe 1100 - (1, ACONIO T B g, ACICP

1
__([(DZLl[qjix(BK)]'OlRD-l_ IIDlL'[q]lX(BK)]'OZR@ l 3 2 1, 2a 1,
2 = 0ilg, ACIII0TY (°S,'S, +75'S)
~Log xCo100y ¢SS, + %SS) : i
2 |q], K|DZ S5 S5 1 3a 12 1R, 1 2R
2 4 ‘gZ S(S;0I[q;, Al|0*TH- 'S;0I[q;, Al|07D)
30 2 1R 1 2R "
— =Y %5,(°S,0/[q,X] 0" TH- S, 0I[q;, X] |0y 1
52 1 ' - =S *S(S0%[g, AlI0TH 2§ 0% (g, AJI0)
l 3 /1 Vil 2 1L 6 "
— =% *S('S0™1[q, X0+ *S,0"[q, X] 0] 1 -
64 ~ <(0lg, A0+

1 . .
— S(@i[g, X0 T 0%1[g,X] IODZ(ZS#% +75's) (55) (g, A Y (S5, +%8)S)  (19)



Cubic Optical Response of Molecules

Furthermore, the expansion of eq 29 gives to third order:

D = m|D|00 (56)

DfYa,, = —0|D(*) |00~ D00~ m*|D|00 (57)
1
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