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The cubic response equations governing nonequilibrium and equilibrium solvation in the continuum approach
are derived and implemented. We consider solvent effects on the frequency dependent second hyperpolar-
izability. We illustrate the effects of optical and static dielectric constants through sample calculations on
H2O and H2CO.

I. Introduction

The technological interest for nonlinear optical (NLO)
materials has generated a vast field of experimental and
theoretical techniques over the last two decades and a fair
amount of attention has been given to the quadratic optical
response of matter. However, from a technical point of view,
cubic optical response properties of matter are those of real
applicability in future optical devices.1-6

Primarily, experimental efforts have focussed on measuring
NLO effects in the condensed phasessolids, pure liquids, or
molecules in solutionssince most potentially interesting NLO
systems decompose upon evaporation. Furthermore, the interest
for the condensed phase stems from the practical realization of
processable optical devices. From a theoretical standpoint
reproducing condensed phase NLO measurements, using first
principles methods, is extremely difficult. The inherent problem
of optical processes in condesed systems is the coupling of
processes on a wide range of time scales. In principle, it requires
a conjunction of theories describing processes on the pico second
scale down to instantaneous events. The latter, however are
suitably described in the framework of electronic structure
theory.

Ab initio electronic structure investigations for small mol-
ecules in vacuum, for which gas phase measurements exist, show
that computation of NLO properties of isolated molecules are
realizable but demanding. Furthermore, the response methodol-
ogy7 has proven successful in the computation of dynamic,
electronic first hyperpolarizabilities (â),8-11 and second hyper-
polarizabilities (γ).11,9,12-18

The above motivates our on-going work with the multicon-
figurational self-consistent reaction field (MCSCRF) solvation
response model. Previously, it has been described and imple-
mented for linear19,20 and quadratic21 optical response of
molecules in equilibrium and nonequilibrium solvation.

Presently we focus on the extension of the response method
to cubic response, leaving the basic solvation model unaltered.
This enables, for the first time, correlated ab initio computations
of the dynamic second hyperpolarizability within the dielectric,
equilibrium, and nonequilibrium continuum solvent model.

Contrary to structural properties and ground state energies
for a solvated molecule, the description of dynamic NLO
molecular properties strongly depends on the manifold of excited
states for the solute-solvent system. Previously, this has been
considered using semiempirical methods,22-25 RPA or time-
dependent HF,26 and MCSCF response theory.19,27,20 In the case
of dynamic second hyperpolarizabilities, only recently Cammi
et al.26 invoked the polarizable continuum model at the HF level
to model solvation of molecules.

In the theory section we briefly reiterate our solvent model,
the solvent response method, and show the derivation of the
cubic solvent response equations. The implementation of these
equations is illustrated with sample calculations ofγ for H2O
and H2CO in different solvents. In discussing these results, we
address the effect of equilibrium and nonequilibrium solvation
on γ and its dispersion.

The NLO properties of molecules are sensitive to the
molecular environment,23,28,29,30,27especially for hydrogen bonded
species such as H2O31,32 and H2CO. Consequently, only
qualitative trends for the second hyperpolarizability should be
expected from such preliminary sample computations, as
previously established for H2O.32

The cubic optical response is the first NLO effect which does
not average out in isotropic systems. In our present use of the
continuum model we assume full isotropy of the solution. As
mentioned above, from electronic structure computations only-
electronic contributions toγ are accessable. Despite the fact
that our method allows for the evaluation of the entireγ tensor
for abitrary frequencies, here we exclusively address third
harmonic generation (THG),γ(-3ω;ω,ω,ω). For solute-
solvent systems, one must expect this process being the least* Author to whom correspondence should be addressed.
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perturbed by nonelectronic degrees of freedoms, when consider-
ing optical frequencies.

II. Theory

A. Equilibrium and Nonequilibrium Solvent Models. The
solvent model employed is a generalization of Kirkwood’s
original model,33-35 where solvation is modeled by surrounding
the solute with an isotropic and homogeneous dielectric medium.
Among the many cavity shapes in use, we employ the simple
spherical cavity, having only the cavity radius,Rcav, as a
parameter. The solute molecule is placed with its center of mass
at the origin of the cavity, and formally represented in terms of
a multipole expansion (of orderl,m) of its molecular charge
distribution,F(r ,t). The dielectric medium is characterized by
a linear and macroscopic electric polarization vector,P(t), with
a correspondent dielectric constant,ε(t).

For the dielectric response to changes inF(r ,t), we use the
approximation that solvent dynamics, on various time scales,
may be partitioned into infinitly fast and slow processes. Thus,
the total polarization vectorP has only an optical and inertial
contribution,

with the dielectric medium characterized by the opticalεop and
staticεst dielectric constants, respectively.

Prior to the application of high frequency, external radiation,
the solute-solvent system is thought to be in internal equilib-
rium. This equilibrium configuration is defined byPin, the
choice of which in principle is arbitrary. The corresponding
molecular electronic state is|0〉 and the molecular charge
distributionFi. Upon interaction with electromagnetic radiation,
only Pop may adjust to sudden changes in the molecular state
(|0〉 f |0̃〉) which results in the new molecular charge distribu-
tion, Ff. However,Pin remains unaltered reflecting the solute
charge distribution prior to the electromagnetic perturbation. The
result is a nonequilibrium solvent-solute configuration where
the solvation energy is given by

The expectation values in eq 2 are obtained according to〈Tlm〉
) Tlm

n - 〈Te
lm〉 and taken with respect to either|0〉 or |0̃〉. The

nuclear charge moments are given as

where Zg is the charge of nucleusg and Rg its position.
Similarly, the electronic charge moments are given as

with tlm(r ) being the lmth component of the real spherical
harmonics andφi the ith molecular orbital. Epq is the second
quantization spin-free operator

which annihilates an electron inæq (of spin symmetryσ) and
creates it inæp. The reaction field factors, describing the

response of the dielectric medium, are given as

and

Applying a static external field does not give rise to a
nonequilibrium configuration: changes inF(r ,t) occur infinitely
slow such that all solvent degrees of freedom have time to
equilibrate. In this limit, therefore,Fi ) Ff and eq 2 reduces to

which we refer to as equilibrium solvation.
In order to describe the time evolution of our model system

we need a Hamiltonian of the form,

where (i)Ho is the nonrelativistic many-electron Hamiltonian
for the molecule in vacuum, (ii)W̃sol is the effective solvent-
solute interaction operator, which depends on the current
molecular state|0̃〉, and (iii) Vpert(t) is the operator for the
interaction between the solute and the external frequency
dependent electromagnetic radiation field. The effective solvent-
solute interaction operator is written as

and is obtained using Frenkel’s36 variational principle for
approximate wave functions: the solvent interaction operator
must give similar time independent properties as obtained from
derivatives of the energy expression. Therefore, it is not the
operator that gives the solvent contribution to the total en-
ergy.19,37,38 The interactions between the nuclear framework
and the solvent give rise to the first two terms in eq 10 which
involve optical and inertial polarization contributions. The third
term we write as

where

In decending order the three terms in eq 12 represent (i) the
optical polarization, induced by the electronic charge distribu-
tion, interacting with the solute’s nuclear charge distribution,
(ii) the interactions between the optical polarization, due to the
electronic charge distribution, and the electronic charge of the
solute, and (iii) the inertial polarization interacting with the
electronic charge distribution.

Of the three terms we recognize that the instantaneous
coupling between the optical polarization and the molecular

P ) Pop + Pin (1)

Esol
neq) ∑

lm

gl(εop)〈Tlm(Ff)〉〈Tlm(Ff)〉 +

∑
lm

gl(εst, εop)[2〈Tlm(Ff)〉 - 〈Tlm(Fi)〉]〈Tlm(Fi)〉 (2)

Tlm
n ) ∑

g

Zgt
lm(Rg) (3)

Tlm
e ) ∑

pq

tpq
lmEpq ) ∑

pq

〈φp|tlm(r )|φq〉Epq (4)

Epq ) ∑
σ

apσ
† aqσ (5)

gl(ε) ) -
Rcav

-(2l+1)(l + 1)(ε - 1)

2[l + ε(l + 1)]
(6)

gl(εst,εop) ) gl(εst) - gl(εop) (7)

Esol
eq ) ∑

lm

gl(εst)|〈Tlm(Ff)〉|2 (8)

H(t) ) Ho + W̃sol + Vpert(t) (9)

W̃sol ) ∑
lm

gl(εop)(Tlm
n )2 + ∑

lm

g(εst,εop)(Tlm
n )2 + T̃g(εst, εop)

(10)

T̃g(εst,εop) ) gsol
(a) + g̃sol

(b) + gsol
(c) (11)

gsol
(a) ) -2∑

lm

gl(εop)Tlm
e Tlm

n

g̃sol
(b) ) 2∑

lm

gl(εop)Tlm
e 〈0̃|Tlm

e |0̃〉

gsol
(c) ) -2∑

lm

gl(εst,εop)〈Tlm(Fi)〉Tlm
e (12)
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electronic subsystem is due tog̃sol
(b). Note, further, that the limit

of equilibrium solvation can be obtained by settingεop ) εst

such thatT̃g becomes

as used in previous equilibrium studies.19

B. Response Method.The time evolution of the electro-
magnetically perturbed solvent-solute system is propagated
using Ehrenfest’s equations of motion

for a set of operators

defined according to

In eq 16, Rn
† are the state transfer operators responsible for

mixing of the reference state,|0〉, with states in the orthogonal
complement{|n〉}, whereasqk

† induces mixing among orbitals.
Using these operators we define Hermitian generators of unitary
transformations in configuration space

and orbital space

the time dependent amplitudes of which are collected in a vector

Since we consider time-dependent perturbations, the amplitudes
must be expressed in a more general basis{O} (ref 7) such
that

This operator basis is split into a configuration and an orbital
part according to

which allows the amplitudes to be written separately as

The unitary transformations in configuration and orbital space

are obtained using the operators: eiS(t) and eiκ(t). Taking our
reference state|0〉 as an MCSCF state, the evolution of the
molecular state is parametrized as

Further, the time-transformed elementary operators occuring in
eq 14 are given as

The Hamiltonian used in eq 14 we take from eq 9, and for the
solvent-solute interaction,W̃sol we note that onlyT̃g(εst,εop)
contributes to the Ehrenfest equation. It is convenient to rewrite
the solvent-solute interaction operator as:

whereClm ) 2gl(εop)Tlm
e andDlm ) Tlm

e . Thus, at this point we
write eq 14 as

Previously, Olsen et al.7 derived the matrix representation of
eq 14 for the situation where the molecule is in vacuum. Our
concern, therefore, are contributions from the last two terms in
eq 26, which principally have the following structure

with C andD being time-independent operators. Following the
procedure from ref 7, we obtain the following matrix represen-
tation of eq 14

where the definitions of Sj,h1,h2,...,hn

[n+1] , Ej,h1,h2,...,hn

[n+1] , and

Tg(ε) ) gsol
(a) + gsol

(b) + gsol
(c) (13)

d
dt

〈0̃|T†|0̃〉 ) 〈0̃|ddt
T̃†|0̃〉 - i〈0̃|[T̃†,H]|0̃〉 (14)

T ) (q†,R†,q,R) (15)

Rn
† ) |n〉 〈0|

qk
† ) Epq, p > q (16)

S(t) ) ∑
n

(Sn(t)Rn
† + Sn

/(t)Rn) (17)

κ(t) ) ∑
rs

(κrs(t)Ers + κrs
/ (t)Esr)

) ∑
k

(κk(t)qk
† + κk

/(t)qk) (18)

â ) (K
S
K*
S*

) (19)

κ(t) + S(t) ) T â ) O r (20)

Oj ) Ooj + Ocj (21)

κ(t) ) ∑
j

Rj(t)Ooj

S(t) ) ∑
j

Rj(t)Ocj (22)

|0̃〉 ) eiκ(t)eiS(t)|0〉 (23)

q̃pq
† ) eiκ(t)qpq

† e-iκ(t)

q̃pq ) eiκ(t)qpqe
-iκ(t)

R̃n
† ) eiκ(t)eiS(t)Rn

†e-iκ(t)e-iS(t)

R̃n ) eiκ(t)eiS(t)Rne
-iκ(t)e-iS(t) (24)

W̃ ) {gsol
(a) + gsol

(c)} + g̃sol
(b) ) gsol

(a+c) + ∑
lm

Clm〈0̃|Dlm|0̃〉 (25)

d

dt
〈0̃|Õ†|0̃〉 ) 〈0̃|d

dt
Õ†|0̃〉 - i〈0̃|[Õ†,H0 + V(t)]|0̃〉 -

i〈0̃|[Õ†,gsol
(a+c)]|0̃〉 - i∑

lm

〈0̃|[Õ†,Clm]|0̃〉 〈0̃|Dlm|0̃〉 (26)

〈0̃|[Õ†,C〈0̃|D|0̃〉]|0̃〉 ) 〈0̃|[Õ†,C]|0̃〉 〈0̃|D|0̃〉 (27)

∑
n)1

∞

(i)nSj,h1,h2,...hn

[n+1] R̆h1
(t)∏

µ)2

n

Rhµ
(t) ) - ∑

n)0

∞

(i)n+1{Ej,h1,h2,...,hn

[n+1] +

Vj,h1,h2,...hn

t[n+1] }∏
µ)1

n

Rhµ
(t) - ∑

n)0

∞

(i)n+1{Gj,h1,h2,...,hn

[n+1] +

∑
k)0

n

∑
lm

Cj,h(1+k),...,hn

lm[n-k+1] Dh1,h2,...,hk

lm[k] }∏
µ)1

n

Rhµ
(t) (28)
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Vj,h1,h2,...,hn

t[n+1] are given in ref 7. The remaining terms are

and

where commutation is represented by the following superop-
erator notation: Â(B) ) [A, B]. The matrix components,
Ej,h1,h2,...,hn

[n+1] , Gj,h1,h2,...,hn

[n+1] , andCj,h1,h2,...,hn

lm[n+1] are given by the following
substitutions:

Until this point, no assumption on our reference state|0〉 was
made sincePin could be chosen randomly. However, the
electromagnetic interation operator has the form

whereVω is the Fourier transform ofV(t) andη an infinitesimal
positive number. Thus the perturbation is applied adiabatically,
that isV(t f -∞) ) 0, in which caseWsol(t f -∞) ) Wsol. As
a natural choice, we optimize the reference state subject to the
generalized Brillouin condition, allowing full relaxation ofPin,

where

C. Implementation of the Solvent Contributions to the
Cubic Response Equations.The implementation of the cubic
response equations with nonequilibrium or equilibrium solvent
configurations is based on previous program developments
within the DALTON program.7,19-21,27,39-42 From a practical
point of view, we utilize that the vacuum part of eq 28 already
has been implemented for linear,7 quadratic,40 and cubic41

response theory. We obtain the cubic solvent response by
adding the third order solvent contribution to the corresponding

vacuum equations. The third-order solvent contributions in eq
28 we write as

The evaluation of the terms fromCj,h1,h2,...,hn

lm[n+1] and Dh1h2...,hn

lm[n]

through third order is presented in Appendix A.
It is advantageous to define the following effective solvent

operators:

In eqs 38-41 and the following we use transformed states
defined as

along with index transformation of solvent integrals defined as

We obtain, using the above solvent effective operators, the

Dh1h2...hn

lm[n] ) ∑
k)0

n (-1)n

k!(n - k)!
〈0|∏

µ)1

k

Ôchµ ∏
µ)k+1

n

Õohµ
Dlm|0〉 (29)

Xj,h1,h2,...hn

[n+1] )

∑
k)0

n (-1)n

k!(n - k)!
(〈0|[Ocj

† ,∏
µ)1

k

Ôchµ ∏
µ)k+1

n

Ôohµ
X]|0〉 +

〈0|∏
µ)1

k

Ôchµ
[O†

oj, ∏
µ)k+1

n

Ôohµ
X]|0〉) (30)

X ) H0 f Ej,h1,h2,...,hn

[n+1]

X ) gsol
(a+c) f Gj,h1,h2,...,hn

[n+1]

X ) Clm f Cj,h1,h2,...,hn

lm[n+1] (31)

V(t) ) ∫-∞

∞
dωVω exp[(-iω + η)t] (32)

(〈0|[q†,Ho + W]|0〉
〈0|[R†,Ho + W]|0〉 ) ) (00) (33)

W ) gsol
a+c + ∑

lm

Clm〈0|Dlm|0〉 (34)

O3(-i〈0̃|[Õ†,W̃]|0̃〉) ) iGj,h1h2h3

[4] Rh1
Rh2

Rh3
+

i∑
lm

{Dh1h2h3

lm[3] Cj
lm[1] + Dh1h2

lm[2] Cj,h3

lm[2] + Dh1

lm[1] Cj,h2h3

lm[3] +

Dlm[0]Cj,h1h2h3

lm[4] }Rh1
Rh2

Rh3
(35)

A ) ∑
lm

Clm〈0|Dlm|0〉 ) 2∑
lm

gl(εop)〈0|Tlm
e |0〉Tlm

e (36)

W ) A + gsol
(a+c) ) A - 2∑

lm

{gl(εop)Tlm
n +

gl(εst,εop)〈T(Fi)〉}Tlm
e (37)

A1 ) 2∑
lm

gl(εop){〈0|Tlm
e (1

κ)|0〉 + 〈01L|Tlm
e |0〉 +

〈0|Tlm
e |01R〉}Tlm

e (38)

B1 ) -
2

3
∑
lm

gl(εop){〈0|Tlm
e |01R〉 + 〈01L|Tlm

e |0〉|}Tlm
e (39)

A12 ) ∑
lm

gl(εop)(〈0|Tlm
e (1

κ,2κ)|0〉 + 2(〈01L|Tlm
e (2

κ)|0〉 +

〈0|Tlm
e (2

κ)|01R〉) + (〈01L|Tlm
e |02R〉 + 〈02L|Tlm

e |01R〉))Tlm
e (40)

A123 ) ∑
lm

gl(εop)(
1

3
〈0|Tlm

e (1
κ,2κ,3κ)|0〉 +

(〈01L|Tlm
e (2

κ,3κ)|0〉 + 〈0|Tlm
e (2

κ,3κ)|01R〉) +

(〈01L|Tlm
e (3

κ)|02R〉 + 〈02L|Tlm
e (3

κ)|01R〉))Tlm
e (41)

|0R〉 ) -∑
n

Sn|n〉 (42)

〈0L| ) ∑
n

Sn
*〈n| (43)

Y(1
κ) ) [1

κ(t),Y]

Y(1
κ,2κ) ) [2

κ(t),[1
κ(t),Y]]

Y(1
κ,2κ,3κ) ) [3

κ(t),[2
κ(t),[1

κ(t),Y]]] (44)
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following solvent contributions toE[4]N1N2N3 in cubic response:

whereP(1,2,3) is the permutation operator. The above equations
have the same structure as the corresponding response equations
for the molecule in vacuum.41 Therefore, the iterative algo-
rithms for solving the sets of response equations or response
eigenvalue equations that was introduced in refs 7, 40, and 41
are maintained. These algorithms involve linear transformations
of the matrices with a trial vector.

III. Sample Calculations

As an illustration of the cubic response method for equilib-
rium and nonequilibrium solvent configurations we consider two
solutes: H2O and H2CO. The electronic structure of the solutes
are evaluated using a complete active space (CAS) wave
function. The choice of active space was based on MP2
occupations numbers and having one correlating orbital for each
strongly occupied orbital. The molecules are placed in theyz-

plane such that molecular dipole moments point in thez
direction. All computations were performed in theC2V point
group.

The geometry of H2O is: ROH ) 0.959 Å andθHOH )
104.654°, and the cavity radius is 2.37 Å, as used previously.19-21

The formal multipole expansion of the molecular charge
distribution was truncated afterl ) 7, which has been shown
to give a proper description for H2O.35 Eight active electrons
were distributed in the eight active orbitals 4a1, 2b1, and 2b2,
and the core orbital ofa1 symmetry was kept inactive. The
basis set employed was the ANO set designed by Widmark et
al.44 with a [13s8p6d/5s4p3d] contraction on oxygen and a
[8s4p/4s3p] on hydrogen. For the vacuum molecule this gives
a Hartree-Fock energy of-76.064960 au. In order to compare
our present results with previous equilibrium and nonequilib-
rium, linear and quadratic solvent response properties, the
choices ofεop andεst are as in refs 20 and 21: (i) nonequilibrium

-Wj(klm)
[4] Nk

1 Nl
2 Nm

3 ) P(1,2,3){(12〈02L|W|03R〉 + 2
3〈0|W + 3

2
A|0〉2

Sn
3S′n)(O1Sj

0
1S′j

) +

2Sn
3S′n(23(〈01L|[qj,W+ 3

2
A]|0〉 + 〈0|[qj,W + 3

2
A]|01R〉)

1
6〈j|W + 3

2
A|01R〉

2
3(〈01L|[qj

†,W+ 3
2
A]|0〉 + 〈0|[qj

†,W + 3
2
A]|01R〉)

-1
6〈01L|W + 3

2
A|j〉 ) + 1

2(〈01L|[qj,W(3
κ) + A3]|02R〉 + 〈02L|[qj,W(3

κ) + A3]|01R〉
0

〈01L|[qj
†,W(3

κ) + A3]|02R〉 + 〈02L|[qj
†,W(3

κ) + A3]|01R〉
0

) +

( 0

(12〈02L|W(3
κ) + A3|0〉 + 〈0|W(3

κ) + A3|02R〉)1
Sj

0

(〈02L|W(3
κ) + A3|0〉 + 1

2
〈0|W(3

κ) + A3|02R〉)1
S′j

) + 1Sn
2S′n (〈0|[qj,W(3

κ) + A(3
κ) + 2Α3 + B3]|0〉

1
2

〈j|W(3
κ) + A(3

κ) + 2A3 + B3|0〉

〈0|[qj
†,W(3κ) + A(3

κ) + 2A3 + B3]|0〉

- 1
2

〈0|W(3
κ) + A(3

κ) + 2A3 + B3|j〉 ) +

1
2(〈01L|[qj,W(2

κ,3κ) + 2A23 + 2A2(3
κ)]|0〉 + 〈0|[qj,W(2

κ,3κ) + 2A23 + 2A2(3
κ)]|01R〉

〈j|W(2
κ, 3

κ) + 2A23 + 2A2(3
κ)|01R〉

〈01L|[qj
†,W(2

κ,3κ) + 2A23 + 2A2(3
κ)]|0〉 + 〈0|[qj

†,W(2
κ,3κ) + 2A23 + 2A2(3

κ)]|01R〉
-〈01L|W(2

κ, 3
κ) + 2A23 + 2A2(3

κ)|j〉
) +

1
2
〈0|W(2

κ,3κ) + 2A23 + 2A2(3
κ)|0〉(01Sj

0
1S′j

)+ 1
6(〈0|[qj,W(1

κ,2κ,3κ) + 6A123 + 6A12(3
κ) + 3A1(2

κ,3κ)]|0〉
〈j|W(1

κ,2κ,3κ) + 6A123 + 6A12(3
κ) + 3A1(2

κ,3κ)|0〉
〈0|[qj

†,W(1
κ,2κ,3κ) + 6A123 + 6A12(3

κ) + 3A1(2
κ,3κ)]|0〉

-〈0|W(1
κ,2κ,3κ) + 6A123 + 6A12(3

κ) + 3A1(2
κ,3κ)|j〉

) +

3
4

2Sn
3S′n( 0

〈j|A|01R〉
0

-〈01L|A|j〉 )+ 1
2

2Sn
3S′n( 0

〈j|A(3
κ) + A3 + B3|0〉

0
-〈0|A(3

κ) + A3 + B3|j〉 )} (45)
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solvent configurations, variation ofεop from 1.30 to 3.00 in steps
of 0.3 while keepingεst equal to either 3.00 or 78.54; (ii)
nonequilibrium solvent configurations, variation ofεst from 3.00
to 78.54, keepingεop fixed at 1.80; and (iii) equilibrium solvent
configurations, andεst is varied from 3.00-78.54.

For H2CO we used a spherical cavity with a radius of 2.645
Å. The molecular geometry of H2CO is from Herzberg,45 and
the multipole expansion taken to orderl) 10. The complete
active space is 6a1, 4b2, 2b1, and 0a2 with 12 active electrons,
and we have used the basis set presented in ref 46. For the gas
phase molecule we obtain the Hartree-Fock energy to be
-113.503616 au. The choice ofεop andεst corresponds to the
following solvents: benzene (εst ) 2.284,εop ) 2.244), ethyl
ether (εst ) 4.335,εop ) 1.828), 1-hexanol (εst ) 13.3,εop )
2.005), acetone (εst ) 20.7,εop ) 1.841), methanol (εst ) 32.63,
εop ) 1.758) and water (εst ) 78.54,εop ) 1.778).

IV. Results and Discussion

In the following we present computational results as obtained
for H2O and H2CO for the second hyperpolarizability tensor.
For sake of brevity, we present only the THG component along
the dipole direction, that is,γ(-3ω;ω;ω;ω)zzzz, which we from
now on simply refer to asγ.

A. H2O. In Figures 1-4 we present CAS computations of
γ at four different input frequencies: 0.0, 0.0345, 0.0656, and
0.0932 au. The corresponding gas phase values ofγ are given
as the dotted lines in these figures. Figure 1 and 2 display
similar trends among which the strong dependence of different
nonequilibrium solvent configurations is quite clear. For fixed
εst, an increase inεop (which enhances the optical polarization
contribution) is accompanied by an increase of the THG
response. Also, for the individual frequenciesγ originates
below the corresponding gas phase value for small values of
εop. For all but the case whereεst ) 78.54 andω ) 0.0932 au,
we observe that the effects of nonequilibrium solvation lead to
values ofγ that supersed the gas phase value with increasing
value ofεop. The differences between Figure 1 and 2 primarily
amount to the fact that, for givenεop, the value ofγ is attenuated
due to shiftingεst from 3.00 to 78.54. Furthermore, in Figure
1 we illustrate the limit where nonequilibrium solvation becomes
equilibrium solvation: we see thatγ increases withεop up to
the point whereεop ) εst. Figure 3 clearly illustrates how the
THG process (in the dipole direction) is impeded by increasing
the inertial polarization for the nonequilibrium solvent config-

uration. The specific choice ofεop corresponds to a value typical
of common solvents. For small values ofεst, at first the
attenuation ofγ is drastic, then the values ofγ gradually level
out at values below the corresponding gas phase values.
Generally, these decreases are more pronounced as the frequency
of the perturbing field increases. The situation in Figure 3
should be contrasted with Figure 4, where the effect onγ for
equilibrium solvation is displayed for increasingε. In this case
the notion of inertial polarization is absent and starting from
the gas phase value,γ is increased almost in an opposite manner
as in Figure 3. Evidently, equilibrium and nonequilibrium
solvation give rise to quite different behavior of the THG
response at the CAS level of electron structure theory. For
nonequilibrium solvation, qualitatively speaking, trends are
similar at the Hartree-Fock level as we may confirm by
comparing Figures 3 and 5. Primarily, electron correlation gives
rise to larger values ofγ, as also seen for the gas phase values.

The main conclusion for H2O is that the dynamic THG
response in the dipole direction increases for equilibrium and
decreases for nonequilibrium solvation, relative to the gas phase
values. This we understand in terms of the increase inγ for
either situation: increasing the optical polarization contribution,
that is,εop, while keepingεst constant, or decreasing the inertial
polarization contribution, that is,εst, for a givenεop. In either
case the solvent configuration is allowed a larger flexibility to
relax to changes inF during the interaction with the electro-

Figure 1. Nonequilibrium solvent calculations ofγ(-3ω;ω;ω;ω)zzzz

of a solvated water molecule as a function ofεop and withεst ) 3.00.
The electronic wave function is a CAS wave function. The correspond-
ing gas phase values are indicated with dotted lines.

Figure 2. Nonequilibrium solvent calculations ofγ(-3ω;ω;ω;ω)zzzz

of solvated water molecule as a function ofεop and withεst ) 78.54.
The electronic wave function is a CAS wave function. The correspond-
ing gas phase values are indicated with dotted lines.

Figure 3. Nonequilibrium solvent calculations ofγ(-3ω;ω;ω;ω)zzzz

of a solvated water molecule as a function ofεst and withεop ) 1.8.
The electronic wave function is a CAS wave function. The correspond-
ing gas phase values are indicated with dotted lines.
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magnetic radiation field. Since equilibrium solvation represents
the extreme of this picture (the entire polarization field may
relax) then γ must be overestimated. With the spectral
representation ofγ in mind, the increases are also evident from
the point of view of excitation energies. Assuming unaffected
transition moments, an increase in the optical polarization leads
to decreased excitation energies, and consequently increases in
γ.

From this and our previous studies19-21 it is clear that there
is a tremendous difference between the results obtained in the
equilibrium solvent model and the ones from the nonequilibrium
solvent model. It is also clear that for high frequency external
fields it is necessary to utilize the nonequilibrium solvent model.

B. H2CO. In Table 1 we present the static and frequency
dependent second hyperpolarizabilityγ of H2CO for the
equilibrium solvent model. The values ofγ are the averaged
second hyperpolarizability tensor elements parallel to the applied
field. The solvents are benzene, ethyl ether, 1-hexanol, acetone,
methanol, and water. Application of the equilibrium solvent
model gives second hyperpolarizabilities that increase with
increasing static dielectric constant, and for all solvents the value
of γ increases compared to vacuum.

Utilization of the nonequilibrium solvent model gives rise to
a completely different picture of the solvent dependence of the
second hyperpolarizability. The averaged second hyperpolar-

izability decreases with increasing solvent polarity, and we
observe a similar interplay between the optical and inertial
polarizations as in refs 20 and 42. As the optical dielectric
constant increases and thereby the optical polarization vector,
the optical polarization of solvent increases. Within the
nonequilibrium solvent model this increase leads to a better
solvation of the solute. Comparatively, the values ofγ in
benzene and 1-hexanol are larger than expected from their values
of the static dielectric constants.

The values ofγ when H2CO is solvated are for all solvents
larger than the one where H2CO is vacuum.

V. Perspective

We have presented the first method for treating fourth-order
molecular properties of solvated molecules described by cor-
related electronic wave functions. We describe the solvent as
a dielectric medium and its interactions with the solute as being
between the optical and inertial polarization vectors and the
solvated molecular charge distribution. The optical polarization
is in equilibrium with the charge distribution of the solute. On
the other hand, the inertial polarization vector is either in an
equilibrium or a nonequilibrium state with respect to the solute
charge distribution. The state of the inertial and optical
polarization vector depends on the time-dependence of the
external perturbation. We have presented the necessary math-
ematical derivations for the development of this method.
Furthermore, we have implemented the cubic solvent response
method in the DALTON program and presented sample
calculations on H2O and H2CO.

Acknowledgment. K.V.M. thanks Statens Naturvidenska-
belige Forskningsra˚d for support.

Figure 4. Equilibrium solvent calculations ofγ(-3ω;ω;ω;ω)zzzzof a
solvated water molecule as a function of the dielectric constant. The
electronic wave function is a CAS wave function. The corresponding
gas phase values are indicated with dotted lines.

Figure 5. Nonequilibrium solvent calculations ofγ(-3ω;ω;ω;ω)zzzz

of a solvated water molecule as a function ofεst and withεop ) 1.8.
The electronic wave function is a SCF wave function. The correspond-
ing gas phase values are indicated with dotted lines.

TABLE 1: MCSCRF Response Calculations of State and
Frequency Dependent Second Hyperpolarizabilities Using
the Equilibrium Solvent Modela

vacuum or
solvent ω ) 0.0 (au) ω ) 0.0049 (au) ω ) 0.0278 (au)

vacuum 2368.86 2375.70 2606.80
benzene 3423.87 3433.68 3764.38
ethyl ether 4135.06 4146.88 4544.60
1-hexanol 4899.14 4913.13 5383.73
acetone 5059.77 5074.22 5560.34
methanol 5170.92 5185.69 5682.59
water 5288.50 5303.61 5811.97

a The presented numbers are the averaged second hyperpolarizabili-
ties parallel to the applied field. The frequency of the field is denoted
by ω. The units are au.

TABLE 2: MCSCRF Response Calculations of Static and
Frequency Dependent Second hyperpolarizabilities Using the
Nonequilibrium Solvent Modela

vacuum or
solvent ω ) 0.0 (au) ω ) 0.0049 (au) ω ) 0.0278 (au)

vacuum 2368.86 2375.70 2606.80
benzene 3394.83 3404.55 3731.97
ethyl ether 2902.36 2910.22 3174.20
1-hexanol 2904.09 2911.80 3170.36
acetone 2771.14 2778.43 3022.82
methanol 2700.79 2707.85 2944.45
water 2699.12 2706.19 2942.99

a The presented numbers are the averaged second hyperpolarizabili-
ties parallel to the applied field. The frequency of the field is denoted
by ω. The units are au.
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VI. Appendix A

Expansion of eq 30 to third order and introduction of the
operatorsT ) (q, R, q†, R†) gives
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Furthermore, the expansion of eq 29 gives to third order:
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